Lesson Plan

Subject: FM (Th -3)

Name of faculty: <u>Er.SATYABRATA KHILAR</u>

Semester: 4TH Class allotted: 4p/week

Branch: Mechanical

Session: <u>2025(S)</u>

Schlester.		From date: To date:	
Discipline	Semester	FIOIII date.	Teaching Aid
Subject:	No. of days/ per week	Theory/ Practical –Topics/Lesson	
Week	Date/Period		White Board
1	04/02/2025 TO 08/02/2025	1-Properties of Fluid Define fluid Description of fluid properties like Density, Specific weight, specific gravity, specific volume Definitions and Units of Dynamic viscosity, kinematic viscosity	Marker Smart board
2	10/02/2025 TO 15/02/2025	surface tension Capillary phenomenon > solve simple problems. > solve simple problems. > solve simple problems.	Marker Smart board
3	17/02/2025 TO 22/02/2025	2-Fluid Pressure and its measurements Definitions and units of fluid pressure, pressure intensity and pressure head. Statement of Pascal's Law. Concept of atmospheric pressure, gauge pressure, vacuum pressure and absolute pressure	
. 4	24/02/2025 TO 01/03/2025	Pressure measuring instruments Manometers (Simple and Differential) Bourdon tube pressure gauge > solve simple problems > solve simple problems > solve simple problems	White Board Marker Smart board
5	03/03/2025 TO 08/03/2025	3-Hydrostatics Definition of hydrostatic pressure Total pressure and centre of pressure on immersed bodies(Horizontal and Vertical Bodies) Archimedes 'principle, concept of buoyancy, meta center and meta centric height (Definition only)	White Board Marker Smart board
6	10/03/2025 TO 15/03/2025	Concept of floatation ➤ solve simple problems. ➤ solve simple problems ➤ solve simple problems	White Board Marker Smart board

Signature of faculty

_	17/03/2025 TO	4-Kinematics of Flow Types of fluid flow Continuity equation(Statement and proof for	White Board Marker Smart board
7	22/03/2025	Bernoulli's theorem(Statement and proof) Notice and limitations of Bernoulli's	White Board Marker
8	24/03/2025 TO 29/03/2025	theorem (Venturimeter, pitot tube) > solve simple problems > solve simple problems	Smart board White Board
9	31/03/2025 TO 05/04/2025	5- Orifices, notches & weirs Define orifice Flow through orifice Orifices coefficient & the relation between the orifice coefficients. INTERNAL ASSESMENT TEST	Marker Smart board
10	07/04/2025 TO 12/04/2025	Classifications of notches & weirs Discharge over a rectangular notch or weir. Numerical problem Numerical problem Numerical problem	White Board Marker Smart board
11	14/04/2025 TO 19/04/2025	6-Flow through pipe Definition of pipe. Loss of energy in pipes. Head loss due to friction: Darcy's and Chezy's formula (Expression only)	White Board Marker Smart board
12	21/04/2025 TO 26/04/2025	Hydraulic gradient and total gradient line Numerical problem Numerical problem Numerical problem	White Board Marker Smart board
13	28/04/2025 TO 03/05/2025	 Numerical problem Numerical problem Numerical problem 7-Impact of jets Impact of jet on fixed and moving vertical flat plates 	White Board Marker Smart board
14	05/05/2025 TO 10/05/2025	Derivation of work done on series of vanes and condition for maximum efficiency. Impact of jet on moving curved vanes, illustration using velocity triangles, derivation of work done, efficiency.	Smart board
15	12/05/2025 TO 17/05/2025	 ➤ Numerical problem ➤ Numerical problem ➤ Numerical problem Revision Revision 	White Board Marker Smart board

Signature of HOD

Signature of faculty