Lesson Plan

Name of faculty:- Sadeqa khatun (Code) TH-1 Subject :- Structural mechanics Branch :- Civil engg. Class allotted 75p/w Semester :-3rd To date:26/10/24 From date:-01/07/24 Semester:-3rd Discipline Teaching Aid Theory/ Practical - Topics/Lesson No. of days/ per week Subject: 5p/wDate/Period Week White board & **Review Of Basic Concepts** 1.1 Basic Principle of Mechanics: Force, Moment, marker 01/07/24 to 1 support conditions, Conditions of equilibrium, C.G & 06/07/24 MI, Free body diagram 1.2 Review of CG and MI of different sections White board & 2.1 Simple Stresses and Strains marker Introduction to stresses and strains: Mechanical 08/07/24 to 2 properties of materials – Rigidity, Elasticity, 13/07/24 Plasticity, Compressibility, Hardness, Toughness, Stiffness, Brittleness, Ductility, Malleability, Creep, Fatigue, Tenacity, Durability, Types of stresses -Tensile, Compressive and Shear stresses White board & Types of strains - Tensile, Compressive and Shear marker strains, Complimentary shear stress - Diagonal 15/07/24to 3 tensile / compressive Stresses due to shear, 20/07/24 Elongation and Contraction, White board & Longitudinal and Lateral strains, Poisson's Ratio, marker Volumetric strain, computation of stress, strain, 22/07/24 to 4 Poisson's ratio, change in dimensions and volume 27/07/24 etc, Hooke's law - Elastic Constants, Derivation of relationship between the elastic constants White board & 2.2 Application of simple stress and strain in marker 29/07/24 to engineering field: 5 Behaviour of ductile and brittle materials under 03/08/24 direct loads, Stress Strain curve of a ductile material, Limit of proportionality, Elastic limit, Yield stress, Ultimate stress, Breaking stress, White board & Percentage elongation, Percentage reduction in area, Significance of percentage elongation and marker 05/08/24 to 6 reduction in area of cross section, Deformation of 10/08/24 prismatic bars due to uniaxial load, Deformation of prismatic bars due to its self weight. White board & 2.3 Complex stress and strain Principal stresses and strains: Occurrence of normal and tangential marker 12/08/24 to 7 stresses, Concept of Principal stress and Principal 17/08/24 Planes, major and minor principal stresses and their orientations, Mohr's Circle and its application to solve problems of complex stresses White board & 3.1 Stresses in beams due to bending: Bending stress in beams – Theory of simple bending – marker 20/08/24 to 8 Assumptions – Moment of resistance – Equation for 24/08/24 Flexure– Flexural stress distribution – Curvature of beam – Position of N.A. and Centroidal Axis – Flexural rigidity – Significance of Section modulus White board & 3.2 Shear stresses in beams: Shear stress distribution in beams of rectangular, circular and marker 27/08/24 to 9 31/08/24

١

		standard sections symmetrical about vertical axis.	White board &
	02/09/24 to		marker
0	06/09/24	tersion basic accimptions of build to story the	
		solid and hollow circular sections, polar moment of	
		inertia, torsional shearing stresses, angle of twist,	6
		torsional rigidity, equation of torsion	White board &
	09/09/24 to	3 A Combined bending and direct stresses.	marker
	14/09/24	Cambination of ctracces (Officience and	
		bending stresses, Maximum and Minimum stresses	
		in Sections, Conditions for no tension, Limit of	
		eccentricity, Middle third/fourth rule, Core or Kern	
		for square, rectangular and circular sections,	
		chimneys, dams and retaining walls	White board &
2	17/09/24 to	4.1 Columns and Struts, Definition, Short and Long	marker & smart
Z	21/09/24	columns, End conditions, Equivalent length /	board
	21/09/21	Effective length, Slenderness ratio, Axially loaded	Jours
		short and long column, Euler's theory of long	
		columns, Critical load for Columns with different end	
		anditions	White board &
2	23/09/24 to	5.1 Types of loads and beams: Types of Loads:	marker
3	28/09/24	Cancentrated (or) Point load, Uniformity Distributed	marker
	20107124	load (UDL), Types of Supports: Simple support, Roller	
		support Hinged support, Fixed support, Types of	
		Reactions: Vertical reaction, Horizontal reaction,	
		Moment reaction, Types of Beams based on support	
		conditions: Calculation of support reactions using	
		equations of static equilibrium.	White board &
	30/09/24 to	E 3 Shear force and bending moment in beams:	
14		Shoar Force and Bending Moment: Signs Convention	marker
	05/10/24	for C F and B M S F and B.M of general cases of	
		determinate beams with concentrated loads and un	
		and B M diagrams for Cantilevers, Simply	
		augusted beams and Over hanging beams, Position	
		of maximum BM, Point of contra flexure, Relation	
		between intensity of load, S.F and B.M.	10
		class and Deflection	White board &
15	07/10/24 to	6.1 Introduction: Shape and nature of elastic curve	marker & smart
	09/10/24	(deflection curve); Relationship between slope,	board
		deflection and curvature (No derivation),	
		Importance of slope and deflection.	
		c a close and deflection of cantilever and simply	
		supported beams under concentrated and uniform	ly
		distributed load (by Double Integration method,	
		Macaulay's method).	
		Indeterminate Beams	White board &
16	17/10/24 to	a the determinacy in beams. Principle of consistent	nt marker
	19/10/24	a compatibility Analysis of propped	
		cantilever, fixed and two span continuous beams h	by
		principle of superposition, SF and BM diagrams	
		principle of superposition, of and one apprentice	
		(point load and udl covering full span)	White board &
17	21/10/24 to	Trusses	marker
	26/10/24	8.1 Introduction: Types of trusses, statically	f
	20120121	determinate and indeterminate trusses, degree of	
		indeterminacy, stable and unstable trusses,	
		the stages of trusses	bod
		8.2 Analysis of trusses: Analytical method (Meth	
		of joints, method of Section)	

Signature of faculty

Signature of HOD