Subject :-MATHEMATICS- III (Code) TH-1 Name of faculty:- KAJAL PRIYA PANI Semester :-3rd Class allotted 4p/w Branch:-ELECTRICAL ENGG. | Discipline | Semester:-3 rd | From date:-01/08/23 To date:30/11/23 | | |------------|------------------------------------|--------------------------------------|--------------| | Subject: | No. of days/ per
week
4p/w : | Theory/ Practical –Topics/Lesson | Teaching Aid | | Week | Date/Period | | | | 1 | 01/08/23
to
05/08/23 | 1. Complex Numbers 1.1 Real and Imaginary numbers. 1.2 Complex numbers, conjugate complex numbers, Modulus and Amplitude of a complex number. 1.3 Geometrical Representation of Complex Numbers. 1.4 Properties of Complex Numbers. | White board & marker | |---|----------------------------|--|----------------------| | 2 | 07/08/23
to
12/08/23 | 1.5 Determination of three cube roots of unity and their properties 1.6 De Moivre's theorem and Solve problems on 1·1 – 1.6 2.Matrices 2.1. Define rank of a matrix. 2.2. Perform elementary row transformations to determine the rank of a matrix. | White board & marker | | 3 | 14/08/23
to
9/08/23 | 2.3. State Rouche's theorem for consistency of a system of linear equations in unknowns. 2.4. Solve equations in three unknowns testing consistency. And problems (2.1-2.4) 3. Linear Differential Equations 3.1. Define Homogeneous and Non – Homogeneous Linear Differential Equations with constant coefficients with examples. 3.2. Find general solution of linear Differential Equations in terms of C | White board & marker | | 1 | 21/08/23
to
6/08/23 | 3.3. Derive rules for finding C.F. And P.I. in terms of operator D, excluding. 3.4. Define partial differential equation (P.D.E). 3.5. Form partial differential equations by eliminating arbitrary constants. (a). Form partial differential equations by eliminating arbitrary functions. | White board & marker | | | 28/08/23
to
2/09/23 | 3.6. Solve partial differential equations of the form Pp + Qq = R (a).problems 3.7. Solve problems on 3.1- 3.3 (a).Problems on (3.4-3.6) | White board & marker | | 10 | 04/09/23
to
09/09/23 | 4. Laplace Transforms 4.1. Define Gamma function 4.2. Define Laplace Transform of a function. And Inverse Laplace Transform 4.3. Derive L.T. of standard functions and explain existence conditions of L.T. 4 | White board & marker | |----|----------------------------|---|------------------------------------| | 7 | 11/09/23
to
16/09/23 | 4.4. Explain linear, shifting property of L.T 4.5 Formulate L.T. of derivatives, integrals, multiplication by and division by . 4.6. Derive formulae of inverse L.T. and explain | White board & marker | | 8 | 18/09/23
to
23/09/23 | 4.7. solve problem on 4.1- 4.2
solve problem on 4.3-4.4
solve problem on 4.5
solve problem on 4.6 | White board & marker | | 9 | 25/09/23
to
30/09/23 | 5. Fourier Series 5.1. Define periodic functions. 5.2. State Dirichlet's condition for the Fourier expansion of a function and it's convergence 5.3. Express periodic function satisfying Dirichlet's conditions as a Fourier series. 5.4. State Euler's formulae. | White board & marker | | 10 | 03/10/23
to
07/10/23 | 5.5. Define Even and Odd functions and find Fourier Series . 5.6. Obtain F.S of continuous functions and functions having points of discontinuity 5.7. Solve problems on 5.1 Solve problems on 5.2 | | | 11 | 09/10/23
to
14/10/23 | . solve problems on 5.3 . Solve problems on 5.4 . Solve problems on 5.5 . Solve problems on 5.6 | White board & marker | | 12 | 16/10/23
to
20/10/23 | 6.Numerical Methods 6.1. Appraise limitation of analytical methods of solution of Algebraic Equations. 6.2. Derive Iterative formula for finding the solutions of Algebraic Equations by 6.2.1 Bisection method 6.2.2. Newton- Raphson method 6.3. solve problems on 6.2.7 | White board & marker & smart board | | 13 | 30/10/23
to
04/11/23 | 7. Finite difference and interpolation 7.1. Explain finite difference and form table of forward and backward difference. 7.2. Define shift Operator and establish relation between & difference operator 7.3. Derive Newton's forward and backward interpolation formula for equintervals. | marker | | - | | 7.4. State Lagrange's interpretation formula. | | |----|--|--|------------------------------------| | 14 | 06/11/23
to | 7.5. Explain numerical integration state: 7.5.1. Newton's Cote's formula. 7.5.2. Trapezoidal rule. 7.5.3. Simpson's 1/3rd rul 7.6. Solve problems on 7.1 Solve problems on 7.2 Solve problems on 7.3 Solve problems on 7.4 | White board & marker | | 15 | 11/11/23
13/11/23
to
18/11/23 | | White board & marker & smart board | | 16 | 20/11/23 | Solve problems on 7.5 REVISION | White board & marker | | 17 | to
25/11/23
28/11/23 to | REVISION | White board & marker | Signature of HOD Kajal priya pani Signature of faculty